Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Background/Objectives: Attaining adequate oxygenation in critically ill patients undergoing invasive ventilation necessitates intense monitoring through pulse oximetry (SpO2) and frequent manual adjustments of ventilator settings like the fraction of inspired oxygen (FiO2) and the level of positive end-expiratory pressure (PEEP). Our aim was to compare the quality of oxygenation with the use of automated ventilation provided by INTELLiVENT-Adaptive Support Ventilation (ASV) vs. ventilation that is not automated, i.e., conventional pressure-controlled or pressure support ventilation. Methods: A substudy within a randomized crossover clinical trial in critically ill patients under invasive ventilation. The primary endpoint was the percentage of breaths in an optimal oxygenation zone, defined by predetermined levels of SpO2, FiO2, and PEEP. Secondary endpoints were the percentage of breaths in acceptable or critical oxygenation zones, the percentage of time spent in optimal, acceptable, and critical oxygenation zones, the number of manual interventions at the ventilator, and the number and duration of ventilator alarms related to oxygenation. Results: Of the 96 patients included in the parent study, 53 were eligible for this current subanalysis. Among them, 31 patients were randomized to start with automated ventilation, while 22 patients began with conventional ventilation. No significant differences were found in the percentage of breaths within the optimal zone between the two ventilation modes (median percentage of breaths during automated ventilation 19.4 [0.1-99.9]% vs. 25.3 [0.0-100.0]%; p = 0.963). Similarly, there were no differences in the percentage of breaths within the acceptable and critical zones, nor in the time spent in the three predefined oxygenation zones. Although the number of manual interventions was lower with automated ventilation, the number and duration of ventilator alarms were fewer with conventional ventilation. Conclusions: The quality of oxygenation with automated ventilation is not different from that with conventional ventilation. However, while automated ventilation comes with fewer manual interventions at the ventilator, it also comes with more ventilator alarms.

Original publication

DOI

10.3390/jcm14010041

Type

Journal

Journal of clinical medicine

Publication Date

12/2024

Volume

14

Addresses

Department of Intensive Care, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands.

Keywords

INTELLiPOWER collaborative investigators