Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The rapid proliferation of germinal center (GC) B cells requires metabolic reprogramming to meet energy demands, yet these metabolic processes are poorly understood. By integrating metabolomic and transcriptomic profiling of GC B cells, we identified that asparagine (Asn) metabolism was highly up-regulated and essential for B cell function. Asparagine synthetase (ASNS) was up-regulated after B cell activation through the integrated stress response sensor GCN2. Conditional deletion of Asns in B cells impaired survival and proliferation in low Asn conditions. Removal of environmental Asn by asparaginase or dietary restriction compromised the GC reaction, impairing affinity maturation and the humoral response to influenza infection. Furthermore, metabolic adaptation to the absence of Asn required ASNS, and oxidative phosphorylation, mitochondrial homeostasis, and synthesis of nucleotides were particularly sensitive to Asn deprivation. These findings demonstrate that Asn metabolism acts as a key regulator of B cell function and GC homeostasis.

Original publication

DOI

10.1126/sciimmunol.adl4613

Type

Journal article

Journal

Science immunology

Publication Date

12/2024

Volume

9

Addresses

Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.

Keywords

Germinal Center, B-Lymphocytes, Animals, Mice, Inbred C57BL, Mice, Knockout, Mice, Aspartate-Ammonia Ligase, Asparagine, Homeostasis