Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Abstract Background Thailand is approaching local elimination of malaria in the eastern provinces. It has successfully reduced the number of cases over the past decade, but there are persistent transmission hot spots in and around forests. This study aimed to use data from the malaria surveillance system to describe the spatiotemporal trends of malaria in Northeast Thailand and fine-scale patterns in locally transmitted cases between 2011 and 2021. Methods Case data was stratified based on likely location of infection and parasite species. Annual Parasite Index per 1000 population (API) was calculated for different categories. Time series decomposition was performed to identify trends and seasonal patterns. Statistically significant clusters of high (hot spots) and low (cold spots) API were identified using the Getis-Ord Gi* statistic. The stability of those hot spots and the absolute change in the proportion of API density from baseline were compared by case type. Results The total number of confirmed cases experienced a non-linear decline by 96.6%, from 1061 in 2011 to 36 in 2021. There has been a decline in both Plasmodium vivax and Plasmodium falciparum case numbers, with only four confirmed P. falciparum cases over the last two years—a 98.89% drop from 180 in 2011. API was generally higher in Si Sa Ket province, which had peaks every 2–3 years. There was a large outbreak in Ubon Ratchathani in 2014–2016 which had a high proportion of P. falciparum reported. The proportion of cases classified increased over the study period, and the proportion of cases classed as indigenous to the village of residence increased from 0.2% to 33.3%. There were stable hot spots of indigenous and imported cases in the south of Si Sa Ket and southeast of Ubon Ratchathani. Plasmodium vivax hot spots were observed into recent years, while those of P. falciparum decreased to zero in Ubon in 2020 and emerged in the eastern part in 2021, the same year that P. falciparum hot spots in Si Sa Ket reached zero. Conclusions There has been a large, non-linear decline in the number of malaria cases reported and an increasing proportion of cases are classed as indigenous to the patient’s village of residence. Stable hot spots of ongoing transmission in the forested border areas were identified, with transmission likely persisting because of remote location and high-risk forest-going behaviours. Future efforts should include cross-border collaboration and continued targeting of high-risk behaviours to reduce the risk of imported cases seeding local transmission.

Original publication

DOI

10.1186/s12936-024-05026-6

Type

Journal article

Journal

Malaria Journal

Publisher

Springer Science and Business Media LLC

Publication Date

17/07/2024

Volume

23