Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Mitochondria are considered a novel drug target as they play a key role in energy production and programmed cell death of eukaryotic cells. The mitochondria of malaria parasites differ from those of their vertebrate hosts, contributing to the drug selectivity and the development of antimalarial drugs. (Fxr)3, a mitochondria-penetrating peptide or MPP, entered malaria-infected red cells without disrupting the membrane and subsequently killed the blood stage of P. falciparum parasites. The effects were more potent on the late stages than on the younger stages. Confocal microscopy showed that the (Fxr)3 intensely localized at the parasite mitochondria. (Fxr)3 highly affected both the lab-strain, chloroquine-resistant K1, and freshly isolated malaria parasites. (Fxr)3 (1 ng/mL to 10 μg/mL) was rarely toxic towards various mammalian cells, i.e., mouse fibroblasts (L929), human leukocytes and erythrocytes. At a thousand times higher concentration (100 μg/mL) than that of the antimalarial activity, cytotoxicity and hemolytic activity of (Fxr)3 were observed. Compared with the known antimalarial drug, atovaquone, (Fxr)3 exhibited more rapid killing activity. This is the first report on antimalarial activity of (Fxr)3, showing localization at parasites' mitochondria.

Original publication

DOI

10.3390/antibiotics10121560

Type

Journal article

Journal

Antibiotics (Basel)

Publication Date

20/12/2021

Volume

10

Keywords

Plasmodium falciparum, antimalarial, localization, mitochondria-penetrating peptide