Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Concerns about malaria parasite resistance to treatment with artemisinin drugs (ARTs) have grown with findings of prolonged parasite clearance t 1/2s (>5 h) and their association with mutations in Plasmodium falciparum Kelch-propeller protein K13. Here, we describe a P. falciparum laboratory cross of K13 C580Y mutant with C580 wild-type parasites to investigate ART response phenotypes in vitro and in vivo. After genotyping >400 isolated progeny, we evaluated 20 recombinants in vitro: IC50 measurements of dihydroartemisinin were at similar low nanomolar levels for C580Y- and C580-type progeny (mean ratio, 1.00; 95% CI, 0.62-1.61), whereas, in a ring-stage survival assay, the C580Y-type progeny had 19.6-fold (95% CI, 9.76-39.2) higher average counts. In splenectomized Aotus monkeys treated with three daily doses of i.v. artesunate, t 1/2 calculations by three different methods yielded mean differences of 0.01 h (95% CI, -3.66 to 3.67), 0.80 h (95% CI, -0.92 to 2.53), and 2.07 h (95% CI, 0.77-3.36) between C580Y and C580 infections. Incidences of recrudescence were 57% in C580Y (4 of 7) versus 70% in C580 (7 of 10) infections (-13% difference; 95% CI, -58% to 35%). Allelic substitution of C580 in a C580Y-containing progeny clone (76H10) yielded a transformant (76H10C580Rev) that, in an infected monkey, recrudesced regularly 13 times over 500 d. Frequent recrudescences of ART-treated P. falciparum infections occur with or without K13 mutations and emphasize the need for improved partner drugs to effectively eliminate the parasites that persist through the ART component of combination therapy.

Original publication

DOI

10.1073/pnas.1813386115

Type

Journal article

Journal

Proceedings of the National Academy of Sciences of the United States of America

Publication Date

12/2018

Volume

115

Pages

12513 - 12518

Addresses

Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.

Keywords

Animals, Plasmodium falciparum, Malaria, Falciparum, Artemisinins, Protozoan Proteins, Antimalarials, Crosses, Genetic, Gene Expression Regulation, Drug Resistance, Mutation, Aotidae