Risk factors for malaria in high incidence areas of Viet Nam: a case–control study
Maude RJ., Ngo TD., Tran DT., Nguyen BTH., Dang DV., Tran LK., Gregory M., Maude RR., Sinha I., Pongsoipetch K., Martin NJ.
Abstract Background A key step to advancing the goal of malaria elimination in Viet Nam by 2030 is focusing limited resources for treatment and prevention to groups most at risk for malaria transmission. Methods To better understand risk factors for malaria transmission in central Viet Nam, a survey of 1000 malaria positive cases and 1000 malaria negative controls was conducted. Cases and controls were matched for age and gender and self-presented at commune health stations (CHS) in Binh Phuoc, Dak Nong and Dak Lak Provinces. Diagnoses were confirmed with microscopy, rapid diagnostic test and PCR. Participants were interviewed about 50 potential risk factors for malaria, which included information about occupation, forest visitation, travel, healthcare-seeking behaviour and prior use of anti-malaria interventions. Participants were enrolled by trained government health workers and the samples were analysed in Vietnamese government laboratories. Data were analysed by univariable, block-wise and multivariable logistic regression. Results Among cases, 61.8% had Plasmodium falciparum, 35.2% Plasmodium vivax and 3% mixed species infections. Median (IQR) age was 27 (21–36) years and 91.2% were male. Twenty-five risk factors were associated with being a case and eleven with being a control. Multivariable analysis found that malaria cases correlated with forest workers, recent forest visitation, longer duration of illness, having a recorded fever, number of malaria infections in the past year, having had prior malaria treatment and having previously visited a clinic. Conclusions This study demonstrates the benefits of increased statistical power from matched controls in malaria surveillance studies, which allows identification of additional independent risk factors. It also illustrates an example of research partnership between academia and government to collect high quality data relevant to planning malaria elimination activities. Modifiable risk factors and implications of the findings for malaria elimination strategy are presented.